
1

July 28, 1993

C++ and Object-Oriented Numerics

Kent G. Budge, James S. Peery, Allen C. Robinson, and Michael K. Wong

Sandia National Laboratories

Albuquerque, New Mexico 87185

Abstract
C++ is often described as an object-oriented programming language because of its strong support
for classes with multiple inheritance and polymorphism. However, for a growing community of
numerical programmers, an equally important feature of C++ is its support of operator overloading
on value-semantic classes. The union of these two techniques results in a programming style which
we choose to callobject-oriented numerics.

The object-oriented numerics paradigm emphasizes the distinction betweenpolymorphic classes
andvalue-semantic classes. Polymorphic classes are generally high-level, are part of an inheritance
hierarchy, and have an interface of named functions based on message passing. Value-semantic
classes are generally low-level, are not part of an inheritance hierarchy (but may form a conversion
hierarchy), and have a public interface of overloaded operators based on an algebra. Numerical
codes are best structured as a set of polymorphic classes which use value-semantic classes to
exchange messages, represent internal states, and perform computations.

Most of the efficiency concerns that have been voiced by numerical programmers about C++ focus
on the use of value-semantic classes in computationally intensive code. In fact, C++ translators can
generate efficient code for many value-semantic classes. However, for the important case of smart
arrays, fundamental difficulties remain. We discuss the two most important of these, namely, alias-
ing ambiguities and the proliferation of temporaries, and discuss some solutions.

Published inJournal of C Language Translation, Vol. 5, No. 32 (1993)

This work performed at Sandia National Laboratories supported by the U. S. Department of Energy under
contract number DE-AC04-76DP00789.

erations
ttributes
ich has

tween
ve a
ritance
mming

umerical
road cat-
e prag-

rence.
es, it can
s

ships.
were a
of D. In
even

their

ration
rred to

e virtual

r exam-
LIB)
equa-
Intr oduction
Booch defines an object-oriented language as one which supports objects having an interface of named op
and a private internal state; which associates a class with each object; and which allows classes to inherit a
from other classes [2]. The C++ programming language is an example of an object-oriented language wh
enjoyed great popularity.

Our experience in writing numerical programs in C++ has shown us the importance of making a distinction be
polymorphic classes,andvalue-semantic classes. Polymorphic classes are part of an inheritance hierarchy and ha
public interface consisting largely of named member functions. Value-semantic classes are not part of an inhe
hierarchy and have a public interface based largely on overloaded operators. C++ is the only popular progra
language whose class construct fully supports both polymorphic classes and value-semantic classes.

In this paper, we discuss how both polymorphic classes and value-semantic classes have been used in large n
programs and the reasons why we believe both are required. We outline the differences between these two b
egories of classes and provide guidelines for determining their correct use. We conclude with a discussion of th
matics of compiling numerical programs written in C++.

Polymorphic Classes
A polymorphic class is part of a public inheritance hierarchy, and its instances are typically manipulated by refe
Because an instance of a polymorphic class can be manipulated through a reference to one of its base class
masquerade as an instance of one of its base classes. In other words, itsapparenttype need not be the same as it
exact type. We reserve the termobject to refer to instances of polymorphic classes.

This property of polymorphic classes implies that inheritance hierarchies should model a set of “Is A” relation
Given a derived class D and its base class B, we can state that D “Is A” B. The use of reference to a D as if it
B implies that both the internal states and external properties of B form a subset of the states and properties
practice, this is too restrictive; it is common for the internal states of D to differ significantly from those of B
when the external properties are compatible. The solution is to qualify selected member functions of B asvirtual.
These functions in B are dynamically overridden by functions in D that have identical signatures, but differ in
interpretation of the object’s internal state [13].

Another way of viewing virtual functions is as a means to safely cast the type of an object reference for the du
of a single procedure call. The more exact type to which the reference is cast is determined by the object refe
and need not be declared in the calling procedure. Because the newly cast reference type is more exact, th
function has access to more of the object’s internal state.

We have found that polymorphic class hierarchies represent certain concepts in numerical codes very well. Fo
ple, two of our engineering codes, PCTH and RHALE [9], make use of a material response library (MATRES
which is implemented as a set of polymorphic class libraries [15]. In the equation of state library, a particular
tion of state model is implemented as a class derived from the abstract base classEquation_of_State . For
example,

class Equation_of_State {
private:

double cv; // heat capacity at constant volume
/* ... */

public:
virtual double Pressure(double T, double rho) = 0;
/* ... */

};

class Ideal_Gas : public Equation_of_State {
private:

double gamma; // adiabatic ratio
2

ere
as, but
and pres-

d to
the spe-
ility of
of state

models,

class is

E code
ncludes
itions,

ne ele-
bers. On

bound-
of node
t ele-
simple

expen-
f a more
as if it

ure 4.
vels of

lization
e have
/* ... */
public:

double Pressure(double T, double rho);
/* ... */

};

class Van_der_Waals_Gas : public Equation of State {
private:

double a, b; // Van der Waals parameters
/* ... */

public:
double Pressure(double T, double rho);
/* ... */

};

In this example, the heat capacitycv is interpreted differently in the two derived equations of state, even though th
is enough universality in the concept to warrant placing it in the base abstraction. It is a constant for an ideal g
is regarded as a reference value for a Van der Waals gas where the heat capacity changes with temperature
sure. This difference in interpretation is incorporated into virtual functions such asPressure . These functions also
provide access to additional internal state information (such as the adiabatic ratiogammafor the ideal gas or the Van
der Waals parametersa andb for the Van der Waals gas) for the duration of the function call.

In simulations, materials are represented by instances of theMaterial class. TheMaterial class “Has A”
pointer toEquation_of_State . At run time, an instance of the desired equation of state is dynamically boun
this pointer. Subsequent references to that equation of state can be programmed without any knowledge of
cific equation of state by referring to the pointer. This approach has increased the maintainability and reusab
our material response library by eliminating nearly all case statements and if-tests based on the exact equation
used. The same approach has been used in MATRESLIB for many other material models, such as strength
burn models, heat conductivity models, and fracture models.

The class hierarchy resulting from this approach is quite simple and is illustrated in Figure 1. Each concrete
derived directly from the common base class.

Another example of a useful polymorphic class hierarchy is a set of boundary specification classes. The RHAL
uses a finite element algorithm to simulate strong shock waves in various materials. The finite element mesh i
specifications of boundaries to which particular boundary conditions might be applied. Some boundary cond
such as kinematic boundary conditions, apply a constraint directly to a set of nodes (the points which defi
ments). The boundaries to which these conditions are applied are adequately described by a list of node num
the other hand, pressure boundary conditions are applied to element faces rather than directly to nodes. The
aries to which these conditions are applied must include a description of the element faces as well as the list
numbers. Finally, contact boundary conditions require complete knowledge of the connectivity of the differen
ment faces on the boundary. These different boundary specifications are illustrated in Figure 2. They form the
linear inheritance hierarchy shown in Figure 3.

The usefulness of this hierarchy derives in part from the fact that the more complete boundary descriptions are
sive to compute and store. Hence, one prefers to use the simplest description that is adequate. However, i
complete description already exists for a given boundary, the inheritance hierarchy allows it to be used exactly
were a less complete description. This results in a hierarchy in which all the classes are concrete.

Finally, we consider the mesh class hierarchy being developed for RHALE. This hierarchy is illustrated in Fig
This hierarchy is more complex than the previous two, since it includes both multiple branches and multiple le
inheritance and uses some abstract base classes.

The common characteristic of the examples provided above is that they are all complex systems where specia
is achieved by augmentation. This is exactly the hierarchy model supported by polymorphic classes, and w
found C++ to be well-suited for representing these abstractions in numerical software.
3

s models
confused,

recision
It is the

y [3]:
Value-Semantic Classes
Value-semantic classes (also calledconcrete classesor abstract data types) differ from polymorphic classes in that
they represent well-defined mathematical values. The set of functions associated with value-semantic classe
an algebra rather than a message interface. Polymorphic classes and value-semantic classes can be easily
but we believe the distinction is real and important.

An example of a value-semantic class is the complex number class:

class complex {
private:

double re, im;

public:
complex(void);
complex(double real, double imag = 0.0);

friend complex operator+(const complex&, const complex&);
/* ... etc ... */

double abs(const complex&);
/* ... ad nauseam ... */

};

This class represents a well-defined set of mathematical values (those complex values within the range and p
of the hardware.) It has a well-defined algebra represented by a set of overloaded functions and operators.
prototypical value-semantic class and is actually a built-in type in other languages.

Other examples of value-semantic classes are provided by the Sandia National Laboratories PHYSLIB librar

class Vector {
private:

double x, y, z;
public:

friend Vector operator+(const Vector&, const Vector);
/* ... etc ... */

};

class Tensor {
private:

double xx, xy, xz;
double yx, yy, yz;
double zx, zy, zz;

public:
friend Tensor operator*(const Tensor&, const Tensor&);
friend Vector operator*(const Tensor&, const Vector&);
/* ... etc ... */

};

class SymTensor { // a symmetric tensor
private:

double xx, xy, xz;
double yy, yz;
double zz;

/* ... etc ... */
};

/* ... etc ... */
4

ation of
es (and

high-

lization.
nsor
his kind
tion is
o-
ns are

e as an
rovided
a

tructed,
ype. In
n as a

ar-
These classes simplify the coding of tensor calculations in physics codes by providing a convenient represent
tensor algebra. They exist in 1-D, 2-D, and 3-D versions which are differentiated through preprocessor directiv
therefore selected at compile time.) Almost all operations are implemented as inline friend functions, and, with
quality compilers, it is possible to obtain a numerically efficient executable program.

Like polymorphic classes, value-semantic classes can be arranged into “Is A” hierarchies of increasing specia
For example, a real number “Is A” complex number with zero imaginary part. A symmetric tensor “Is A” full te
whose lower triangular components are equal to the corresponding upper triangular components. However, t
of specialization isnotwell represented by an inheritance hierarchy, since the direction in which the representa
augmented (by adding more components) isoppositeto the direction in which specialization takes place. This vi
lates a basic assumption of polymorphic class hierarchies, which is that the direction in which representatio
augmented is thesame as the direction in which specialization takes place.

One benefit of inheritance for polymorphic classes is that it lets an object of a derived class D masquerad
object of a base class B, reducing the number of distinct functions that must be written. These semantics are p
for value-semantic classes through the mechanism ofuser-defined conversions. These conversions permit a value of
specialized type (such asSymTensor) to masquerade as a value of a more general type (such asTensor). For
example,

class SymTensor { // a symmetric tensor; specialized
private:

double xx, xy, xz;
double yy, yz;
double zz;

/* ... etc ... */
};

class Tensor { // a full tensor; general
private:

double xx, xy, xz;
double yx, yy, yz;
double zx, zy, zz;

public:
Tensor(const SymTensor& a) :

xx(a.xx), xy(a.xy), xz(a.xz),
yx(a.xy), yy(a.yy), yz(a.yz),
zx(a.xz), zy(a.yz), zz(a.zz) {}

friend double Tr(const Tensor& a){ return a.xx + a.yy + a.zz; }
/* ... etc ... */

};

main(){
SymTensor a;
/* ... */
double t = Tr(a);

}

In this code fragment,a is aSymTensor that is converted to aTensor to serve as the argument forTr(const
Tensor&) . This masquerade mechanism is less efficient than inheritance, since a temporary must be cons
but its inefficiency is compensated by the savings provided by a smaller representation of the specialized t
principle, a compiler can optimize many such conversions and function calls, if inlined, by treating a conversio
set of aliases.

Value-semantic classes can be placed into aconversion hierarchythat is analogous to the inheritance hierarchies ch
acteristic of polymorphic classes. Such hierarchies may include bultin types (such asint , double , or pointers)
5

hip can

umption
ues are

alue-
a-

domain.
ber is a
alculus

en one

than

ers in the

ful to pro-
ation (for
senta-
oose to
ficient.

often
since conversion to these types is possible. We illustrate such a hierarchy in Figure 5. A conversion relations
be distinguished from an inheritance relationship in class diagrams through the use of an unfilled arrow.

Our experience shows that polymorphic classes are rarely useful for value representation, even when the ass
that specialization is achieved through augmentation is not violated. There are two reasons for this. First, val
the building blocks of computation, and their representation and operationsmustbe efficient. This generally requires
that the exact type of a value be known at compile time. In particular, virtual functions are virtually useless in v
semantic classes. Second, experience shows thatobject slicingis a major problem for classes with overloaded oper
tors that are part of a public inheritance hierarchy [14].

We illustrate object slicing with the following example:

class dblarray {
private:

size_t length;
size_t *reference_count;
double *data_array;

public:
friend dblarray operator+(const dblarray&, const dblarray&);
/* ... etc ... */

};

class cc_field : public dblarray { // cell-centered field
private:

Topology *mesh_topology;

public:
friend cc_field Laplacian(const cc_field&, const cc_field&);
/* ... */

};

We have specialized a generic smart array class to represent a cell-centered scalar field on a finite-element
This is the rare case of specialization by augmentation for a value-semantic class. The additional data mem
pointer to an object which represents the topology of the finite-element domain. This added data supports c
operations.

Note what takes place, however, if we add twocc_field values. The result is adblarray , not acc_field ; the
topological information has been lost. One can get around this by redefining all the arithmetic operators, but th
loses most of the benefits of inheritance. It is better to move the calculus operations into theTopology class and
stick with usingdblarray to represent all array-like values. Polymorphic classes are more easily specialized
value-semantic classes.

An interesting characteristic of value-semantic classes is that it often seems sensible to place the data memb
public interface. In the case of the complex number class shown earlier, the only data members are thedouble val-
ues representing the real and imaginary parts. It can be argued that these have an independent meaning use
grammers and should therefore be accessible. On the other hand, one might decide to change the represent
example, from real and imaginary parts to magnitude and argument), which will break existing code if the repre
tion is public. This argues for a buffer of access functions between the user and the representation [7]. We ch
make data members public only when the representation is both universally accepted and computationally ef

Another characteristic of value-semantic classes is that “Has A” relationships are extremely common. This
results in some uncertainty as to the best way to decompose an aggregate value. Consider three examples:

class complex_array {
private:

size_t length;
size_t *reference_count;
6

f arrays.
jury is

ingle
is

internal
element
complex *array;

public:
complex& operator[](size_t n){

return array[n];
}
complex operator[](size_t n) const {

 return array[n];
}
/* ... */

};

versus

class complex_array {
private:

dblarray real, imaginary;

public:
complex element(size_t n) const{

 return complex(real[n], imaginary[n]);
}
void element(size_t n, const complex& c){

real[n] = c.real();
imag[n] = c.imag();

}
/* ... */

};

versus

class complex_array {
private:

dblarray packed_array;

public:
 complex& operator[](size_t n){

return *(complex*)(&packed_array[n<<1]);
}
complex operator[](size_t n) const {

 return complex(packed_array[n<<1],
packed_array[(n<<1)+1]);

}
/* ... */

};

The first example implements an array of complex values, whereas the second implements a complex value o
Both classes represent the same concept. This is the “array of objects” versus “object of arrays” dilemma. The
still out on which is the best approach.

The third approach is what we might call “object of array.” The individual complex values are stored in a s
dblarray . This approach is sensible ifdblarray is highly optimized and an efficient subscript operator
required (ruling out the second approach, where access functions must be used instead.)

In general, it is best to avoid a subscript operator for classes representing arrays of aggregate values. Since
representations should be flexible, an interface that is insensitive to the representation is preferable. Efficient
access functions can be written for all of the above internal representations.

We summarize the distinctions between polymorphic classes and value-semantic classes in Table 1.
7

olymor-
mantic

classes
is implies
found

resent
ugh
uation

code,
lue-
ange of

TRAN-
class

rn.

emantic
erever
Why Distinguish Polymorphic Classes from Value-Semantic Classes?
The distinction between these two types of classes is real and important. Each does a particular task best. P
phic classes are much too inefficient for low-level, value-based computation. On the other hand, value-se
classes are not powerful enough to handle complexity at high levels of a program.

We believe that the most effective way to use C++ for numerics is to structure the code as a set of polymorphic
that use value-semantic classes for message passing, representation of internal states, and computation. Th
that the polymorphic classes exist largely in the upper levels of the code, while value-semantic classes will be
throughout the lower levels.

The computational physicist will regard such a code as an environment in which polymorphic classes providecontext
for representing physics equations as expressions using value-semantic classes. For example,

LVectorField Block::Internal_Force(void) const
{

SymTensorField stress =
Sym(rotation * material->Stress() * Trans(rotation));

return linklist->Element_Surface_Integral(stress, curcoor);
}

Block , a polymorphic class, represents a portion of the problem domain. It Uses A polymorphic class to rep
the material (through the pointermaterial) and another polymorphic class to represent the mesh topology (thro
the pointerlinklist). These classes provide all the context necessary to translate an important physics eq
into an expression using value-semantic classes such asSymTensorField andLVectorField .

As we see it, the alternative to programming in this way is to use polymorphic classes in the upper levels of a
but drop into FORTRAN or FORTRAN-like code in the lower levels. Although one must ultimately define the va
semantic class operations in terms of FORTRAN-like code, the use of value-semantic objects extends the r
applicability of the concepts of data encapsulation and abstraction into much lower levels of a code.

It is not enough that value-semantic classes provide far superior software engineering characteristics to FOR
like code. To be competitive with FORTRAN, the code generated by a C++ translator for value-semantic
expressions must also approach FORTRAN-like efficiency. The remainder of our paper addresses this conce

Function Inlining and Value-Semantic Class Operators
Because values are the building blocks of computation, the overloaded operators associated with value-s
classesmusttranslate into efficient machine code. This means that the overload functions should be inlined wh
possible to permit optimizations that transcend the scope of individual operations.

For example, consider the following:

class complex {
private:

double re, im;

public:
complex(void){};
complex(double real a, double imag b = 0.0) : re(a), im(b) {}

friend complex operator+(const complex& a, const complex& b){
return complex(a.re+b.re, a.im+b.im);

}
friend complex operator*(const complex& a, const complex& b){

return complex(a.re*a.re-a.im*a.im, a.re*b.im+a.im*b.re);
}
/* ... etc ... */
8

g like

dundant
mple-
, this is
n be

expres-
ditions
e.

wo cat-
e access
pers for
to write
};

main(){
complex a, b, c, x, y;

/* ... */

y = a + x*(b + x*c);

/* ... */
}

When the various inline operator and constructor calls are expanded, the resulting code might look somethin

main(){
complex a, b, c, x, y;
/* ... */
{

complex tmp1, tmp2, tmp3;
tmp1.re = x.re*c.re-x.im*c.im;
tmp1.im = x.re*c.im+x.im*c.re;
tmp2.re = b.re+tmp1.re;
tmp2.im = b.im+tmp1.im;
tmp3.re = x.re*tmp2.re-x.im*tmp2.im;
tmp3.im = x.re*tmp2.im+x.im*tmp2.re;
y.re = a.re+tmp3.re;
y.im = a.im+tmp3.im;

}
/* ... */

}

which a good optimizer can transform to

main(){
complex a, b, c, x, y;
/* ... */
{

register double re, im, xre=x.re, xim=x.im;
re = b.re+xre*c.re-xim*c.im;
im = b.im+xre*c.im+xim*c.re;
y.re = a.re+xre*re-xim*im;
y.im = a.im+xre*im+xim*re;

}
/* ... */

}

The transformed code is more efficient, since it stores intermediate results in registers or caches and avoids re
memory fetches. Unfortunately, today’s translators do not always perform this well. For example, the original i
mentation of C++ refuses to inline functions that are used more than once in a single expression [13]. However
a restriction which could easily be lifted. A translator should certainly be able to inline any function which ca
reduced to a comma expression [11]; should not necessarily regard multiple uses of an inline function in an
sion as a hint to outline the function; and should be able to inline nested inline function calls. When these con
are satisfied, most expressions involving value-semantic classes can be translated into efficient machine cod

An interesting feature of overloaded operators on value-semantic classes is that they seem to fall into one of t
egories: those which are essentially constructors (such as most arithmetic operators), and those which ar
functions (such as the subscript operator). In the previous examples, all the arithmetic operators were wrap
constructor calls with simple expressions as arguments. Perhaps in some future child of C++ one will be able

class complex {
double re, im;
9

ording
owever,
to C++

f

arrays

be
ointers
r use of
public:
constructor(double real, double imag) : re(real), im(imag) {}

constructor operator+(const complex& a, const complex& b){
re = a.re + b.re;
im = a.im + b.im;

}

/* ... */
};

Written this way, the true nature of the operator is revealed. It constructs a new value from two other values acc
to the rules of its algebra. The operator is a member function, but preserves the symmetry of its operands. H
since it is not significantly more efficient than present syntax, we do not seriously propose such an extension
at this time; we simply present it as food for thought.

Smart Arrays
A potentially very important class of value-semantic classes aresmart arrays. We have given numerous examples o
these already. One can use smart arrays to write extremely modular, reusable, and expressive code, such as

f = mesh->Del()*T + b;

to represent an equation such as

(EQ 1)

In this code, we use smart arrays to represent vector and tensor fields, and the objectmesh hides the discretization of
the spatial domain into a finite difference grid, finite element set, or other mesh topology. Unfortunately, smart
are very difficult to implement efficiently [5] [9].

One problem with smart arrays is the presence ofaliasing ambiguities.These occur because the array class must
implemented using a pointer to the actual data. The compiler often is unable to determine whether multiple p
in its scope point to the same object. Aliasing ambiguities force the compiler to generate code that makes poo
registers and caches, particularly on high-performance computers. For example,

class dblarray {
private:

size_t length;
size_t *reference_count;
double *array;

dblarray(double *d, size_t l) :
length(l),
reference_count(new size_t(1)),
array(d)

{}

public:
friend dblarray operator*(const dblarray&,

const dblarray&);
/* ... */

};

dblarray operator*(const dblarray& a,
const dblarray& b){

const size_t l = a.length;

f T∇• b+=
10

perfor-
uffer by

ses are

for the
be

ar
 such as

-
Further-
in dead

is com-
ient to

’s trans-
sting
pres-
assert(l == b.length); // turned off for release
double *d = new double[l];
for (register i=0; i<l; i++) d[i] = a.array[i] * b.array[i];
return dblarray(d, l);

}

In general, the compiler must assume that the array pointed to byd might overlap the array pointed to bya.array
or b.array . As a result, it will generate code that ensures thatd[i] is updated in memory beforea.array[i+1]
or b.array[i+1] are fetched. This prevents effective use of registers, pipelines, and caches and reduces
mance on a wide variety of high-performance computers. On vector supercomputers, the performance may s
a factor of ~40-80!

In many cases, this problem can be solved by the introduction of a suitable pointer qualifier to indicate that alia
not allowed [6] or by permitting the compiler to assume that the pointer returned by thenew operator is unaliased [4].
The introduction of a new pointer qualifier would be an extension to the language and has been rejected
present by the ANSI C++ committee. However, the assumption thatnew returns an unaliased pointer appears to
justified by the current language of the ANSI working draft.

Another difficulty with smart arrays is theproliferation of temporaries.This arises because the current C++ gramm
forces each operation in an array expression to be fully evaluated in sequence. In other words, an expression

y = a + b*x;

translates into code that fully evaluatesb*x , storing the result in a temporary arrayt ; then fully evaluatesa + t ,
storing the result in a second temporarytt ; then “evaluates”y = tt . This is a rather simple-minded way to evalu
ate the expression. It results in excessive memory usage and hinders efficient use of registers and caches.
more, if temporaries are not destroyed at the end of expressions, large amounts of memory may be tied up
temporaries by the time the flow of control reaches the end of a program block. In effect, C++ mandates that th
putation be decomposed first by operation and then by array element. On almost any platform, it is more effic
decompose first by array element and then by operation.

Optimization across the above expression requires that the overloaded operator calls be inlined. Most of today
lators cannot inline functions containing loops. However, the GNU C++ compiler claims this capability, sugge
that this is not an insurmountable obstacle [12]. With full inlining of operator functions, the expansion of the ex
sion might be:

{
double tmp1, tmp2;
const size_t l = b.length;
double *d = new double[l];
for (register i=0; i<l; i++) d[i] = b.array[i] * x.array[i];
tmp1.length = l;
tmp1.reference_count = new int(1);
tmp1.array = d;
const size_t m = a.length;
double *e = new double[m];
for (register j=0; j<m; j++) e[i] = a.array[i] + tmp1.array[i];
tmp2.length = m;
tmp2.reference_count = new int(1);
tmp2.array = e;
if (!--*y.reference_count){

delete y.reference_count;
delete[] y.array;

}
y.length = tmp2.length;
*(y.reference_count = tmp2.reference_count)++;
y.array = tmp2.array;
if (!--*tmp2.reference_count){

delete tmp2.reference_count;
11

way.

eferred
ays [8],

e, but
ed. Each
erator
ination

ypes,
se such

as the
nguage

erations
the left-
-level
sses.

ration as
delete[] tmp2.array;
}
if (!--*tmp1.reference_count){

delete tmp1.reference_count;
delete[] tmp1.array;

}
}

Ideally, this should subsequently be transformed to

{
const size_t m = a.length;
if (!--*y.reference_count){

delete y.reference_count;
delete[] y.array;

}
y.length = a.length;
y.reference_count = new int(1);
y.array = new double[m];
for (register i=0; i<m; i++)

y.array[i] = a.array[i] + b.array[i] * x.array[i];
}

One might rely on improved inlining and very smart optimizers to generate efficient smart array code in this
However, such compilers will likely be expensive to develop and support.

A second solution is to rely on sophisticated class definitions. Techniques such as return-by-reference or d
expression evaluation can cut memory usage and yield acceptable computational efficiency for very large arr
[10]. However, the overheads of some of these methods are prohibitive for smaller arrays.

A third solution is to extend the C++ grammar to permit overloading of entire parse trees. This looks attractiv
one encounters a combinatoric explosion of possible parse trees when more than a few operations are combin
requires its own overload function. However, even the ability to overload the simplest and most common op
combinations would be helpful. We are aware of at least one extended C++ translator which supports comb
operators, and this approach will undoubtedly be explored further [1].

Finally, one can find a way to introduce array syntax into C++ at an atomic level. This requires built-in array t
which could look like value-semantic classes to avoid changing the core language [4]. Programmers could u
classes as building blocks for their own, specialized, smart array classes. This is the solution we advocate.

Built-In Array Classes
Arrays are used in a wide variety of contexts. This implies that built-in array classes should be as low-level
required optimization characteristics permit. The array classes that have been proposed to the ANSI C++ la
standard committee are a representation of the mathematical concept of an ordered set of values.

These array classes are manipulated using a large set of overloaded operators and functions. All binary op
between arrays are element-by-element operations. Assignment is non-conforming, meaning that an array on
hand side of an assignment will be resized, if necessary, to conform to the right-hand side. A number of low
topological operations are provided to facilitate the use of these classes as building blocks for higher-level cla

The operations and functions chosen for the array classes make it possible to code any single-loop array ope
an expression. For example,

class Vector : private dblarray {
private:

Vector(const dblarray& a) : dblarray(a) {}
12

f these
loop

matrix
written.

t in the
these
public:
Vector(void){}
Vector(size_t n) : dblarray(n) {}

friend Vector operator+(const Vector&, const Vector&);
friend double operator*(const Vector&, const Vector&);
/* ... etc ... */

};

Vector operator+(const Vector& a, const Vector& b){
return Vector((dblarray&)a + (dblarray&)b);

}

double operator*(const Vector& a, const Vector& b){
return (a*b).Sum();

}

However, many important array operations cannot be written as single-loop operations. The most important o
is matrix multiplication, which is normally written as a triple-loop operation that can be “unrolled” into a double-
operation:

class Matrix : private dblarray {
private:

size_t n;

public:
Matrix(void){}
Matrix(size_t nn) : dblarray(nn), n(nn) {}

double Element(size_t r, size_t c){
return dblarray::operator[](r + N*c);

}

friend Matrix operator*(const Matrix&, const Matrix&);
};

Matrix operator*(const Matrix& a, const Matrix& b){
const size_t N = a.n;
assert(N == b.n);
Matrix rtn(N);
for (register i=0; i<N*N; i++){

size_t r = i%N, c = i/N;
rtn[i] =

(a.gather(r,N*(N-1)+r,N)*b.gather(c*N,(c+1)*N)).Sum();
}
return rtn;

}

In this example, the innermost loop has been replaced with adblarray expression. The first call togather selects
ther th row ofa and the second call togather selects thec th row ofb.

There is a bewildering variety of double-loop operations. Most of these operations appear in the context of
algebra, and there are literally dozens of distinct patterns of sparseness for which matrix operations might be
This suggests that the line should be drawn at single-loop operations.

Although we have experimented with different implementations of the array classes described in [4], we are no
business of compiler development and have not been able to experiment with built-in compiler support for
classes. We would like to see compiler developers explore this approach to solving the smart array problem.
13

ing.

lify the
mpiler
f large

hat the
excep-

expect
orage.

sions, it
es the
elieve

ms. C++
g large
xchange

elatively
for the
generic
Other Aspects of C++
In this section, we discuss some miscellaneous aspects of C++ from the point of view of numerical programm

We have only begun to explore the potential of templates to date. However, we expect that templates will simp
task of developing families of specialized value-semantic classes. We are pleased to find that our C++ co
ensures that identical template instantiation in separate translation units does not result in multiple copies o
template functions, as we initially feared would be the case.

We have had no experience with exception handling, since this feature is not yet widely available, but fear t
necessity of supporting stack unwinding will result in unacceptable run-time overheads. Implementations of
tion handling should ensure that no such overheads are incurred if exceptions are not thrown.

A major challenge with our larger codes has been the implementation of persistent polymorphic objects. We
that run-time type identification will provide features that support reasonable idioms for persistent object st
However, we have had no experience to date, since RTTI is not yet available.

One of our major concerns is the lifetime of temporaries. If temporaries are not destroyed at the end of expres
is possible for large amounts of memory to be tied up in dead temporaries by the time the flow of control reach
end of a block. We prefer immediate destruction, but recognize that this will break much existing code. We b
that destruction at the end of expressions is a reasonable compromise.

Conclusions
Experience shows that both polymorphic classes and value-semantic classes are of value in numerical progra
is unique among popular programming languages for its ability to support both. Our experience in programmin
simulation codes in C++ suggests that codes should be structured as a set of polymorphic classes which e
messages, represent internal states, and perform computations using value-semantic classes.

Efficiency concerns in such codes will be focused on the value-semantic classes. We believe that code using r
simple value-semantic classes can be optimized satisfactorily using existing compiler technology. However,
important case of smart arrays, the current compiler technology is inadequate. We advocate the adoption of
array classes, which can be implemented as built-in types, to fill this gap.
14

Table 1: Polymorphic Classesvs. Value-Semantic Classes

Polymorphic Class Value-Semantic Class

Hierarchy mechanism Inheritance Conversion

Computational Interface Message Passing Algebra

Interface Mechanism Member Functions Overloaded Operators

Degree of Complexity High Low

Number of Specializations Numerous Few

Computational Efficiency Not Critical Critical
15

Figure 1. Illustration of Model Class Hierarchy

Equation_of_State

Ideal_Gas

Van_der_Waals_Gas

MG_Us_Up

MG_Murnaghan

Tabular
16

Figure 2. Illustration of Finite Element Boundary Classes

class Node_Set
{

protected:
size_t num_nodes;
int *node;
/* ... */

};

class Side_Set :
public Node_Set

{
protected:

size_t num_faces;
int *face_node[2];
/* ... */

};

class Surface :
public Side_Set

{
protected:

int *side_neighbor[2];
/* ... */

};
17

Figure 3. Boundary Class Hierarchy

Node_Set

Side_Set

Surface
18

Figure 4. Mesh Class Hierarchy

an_unstructured_mesh

a_mesh_domain

a_domain

a_logically_rectangular_mesh

a_smooth_particle_hydro_set

a_free_Lagrange_mesh
19

Figure 5. Illustration of the Conversion Hierarchy in the PHYSLIB Library

Tensor

SymTensor AntiTensor
20

nal

1-

uting

s.”

e,

rob-
ty of

onse
References
1 ARC++ User’s Manual. ARSoftware Corporation, Landover, Maryland, 1993.

2 Booch, G.,Object-Oriented Design with Applications.The Benjamin/Cummings Publishing
Company, Inc, Redwood City, California, 1991.

3 Budge, K.G., “PHYSLIB: A C++ Tensor Class Library.” SAND91-1752, Sandia Natio
Laboratories, Albuquerque, New Mexico 1991.

4 Budge, K.G., “Proposal for a Numerical Array Library.” ANSI X3J16-93-0042/ISO WG2
N0249, March, 1993.

5 Budge, K.G., Peery, J.S., and Robinson, A.C. “High-Performance Scientific Comp
Using C++.”Proceedings of the 1992 USENIX C++ Technical Conference, August 1992.

6 Holly, M. “New Keyword for C++: Restrict.” X3J16-92-0057 / WG21-N0134, June 1992

7 Murray, R. “C++ Tactics.” AT&T Bell Laboratories, 1990.

8 Quinlan, D., “P++, an Architecture-Independent Software Development Environment.”Pro-
ceedings of the Copper Mountain Conference on Iterative Methods, Copper Mountain, CO,
April 9-14, 1992.

9 Robinson, A.C., et al., “Massively Parallel Computing, C++ and Hydrocode Algorithm
ASCE 8th Conference on Computing,June 1992.

10 Schutt, J.A., private communication, 1993.

11 Shopiro, J., private communication, 1991.

12 Stallman, R.M.Using and Porting GNU CC. Free Software Foundation, Inc., Cambridg
Massachusetts, 1989.

13 Stroustrup, B. and Ellis, M.The Annotated C++ Reference Manual,Addison Wesley, Read-
ing, Massachusetts, 1990.

14 Verner, D. “Developing Generic Classes for Finite Element and Finite Difference P
lems.” Master’s thesis, Department of Electrical and Computer Engineering, Universi
New Mexico, Albuquerque, New Mexico, 1993.

15 Wong, M.K., and Fang, H.E., “MatResLib: A Reusable, Object-Oriented Material Resp
Library.” Proceedings of the First Annual Object-Oriented Numerics Conference.Rogue
Wave Software, Inc., Corvallis, Oregon, 1993.

	Abstract
	Introduction
	Polymorphic Classes
	Value-Semantic Classes
	Why Distinguish Polymorphic Classes from Value-Semantic Classes?
	Function Inlining and Value-Semantic Class Operators
	Smart Arrays
	Built-In Array Classes
	Other Aspects of C++
	Conclusions
	References

